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Abstract-Analyses of continuous constant pressure reverse osmosis two-dimensional fiow systems are 
given such that system performance is predicted explicitly in terms of operating variables. Such problems 
require the solution of a nonlinear diffusion equation with nonlinear boundary conditions. A series 
solution, which accounts for nonlinearities in both the diffusion equation and its boundary conditions, is 
developed. 

Boundary-layer Rows with pressure gradient are treated as wedge type flows, and the analyses given can 
be applied to both fully developed and entrance region flows. Generalized numerical results are given for 
a wide range of practical interest. Some specific data are also reported for typical systems similar to those 

which may be used in practice. 

NOMENCLATURE flat duct ; 

membrane constant defined by equa- utt, 
tion (4) ; 
= ~~~~; f4 

diffusion coefficient ; hvP~> 

fraction of feed converted to fresh 
water divided by the fraction that WV 
would be converted if the wall velocity x, 
were u,,,(O) along the entire conduit ; 
mass flux of salt defined by equation Xl, 

(5); Y> 

P&let number, ‘F ; Greek symbols 

bulk velocity of brine in parallel plate 
channel at x = 0 ; 
transverse velocity ; 
transverse velocity at wall at entrance 
to system ; 
mass fraction of salt in brine ; 
axial distance coordinate ; 

= 16 
x/4 R 

4R CJ&; 
transverse distance coordinate. 

4U,R 
Reynolds number, -._-.--* 

v f 

density ; 
viscosity ; 

UC&P =.---; 
P 

Schmidt number, v/D; 
total pressure drop across membrane ; 
volume of water produced per unit 
time per unit width of membrane; 
half channel width ; 
axial velocity ; 
core velocity in entrance region of 

? w> 

V, 

% 

a, 
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osmotic pressure of a saline solution ; 
osmotic pressure at x = 0; 
dimensionless mass fraction, 

w,Iw, (4 Y) ; 
shear stress at membrane wall ; 
kinematic viscosity ; 
dimensionless coordinate, 

J$$‘IDI ; 

= q@; 
= D/~~~(O) W ; 
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6. momentum boundary-layer thickness. Since the Schmidt number for salt water is 

Subscripts about 560, the diffusion boundary layer is 

b, bulk value ; much thinner than the momentum boundary 

M’, value at membrane surface ; layer and, therefore, the velocity components 

X , free stream quantity. can be represented by expressions which are 

accurate only in the region near the wall. Exact 
ANALYSIS asymptotic velocity components are used in 

CURRENTLY, one of the more promising pro- both the diffusion equation and the boundary 
cesses for purifying saline water solutions is the condition at the wall. 
reverse osmosis or ultra-filtration process. In Figure 1 shows the coordinate system used. 
principle, reverse osmosis is very simple and its If the diffusion boundary layer is very thin, then 
most attractive feature is that no obvious phase 

change is required in order to separate the salt --------- 
and water. Separations in reverse osmosis ut . fR -----7--- f 

systems involve the use of selective membranes 
x 

which, in the ideal case, are permeable to water 
FIG. 1. Coordinate system. 

but not salt. Practical designs will no doubt one can neglect the effect of any transverse 
employ continuous systems but the geometry curvature of the conduit, and the continuity, 
of such systems may vary quite considerably. momentum and diffusion equations can be 
Therefore, it is desirable to develop mathe- 
matical solutions which are general enough to 

apply to various flow conditions and geometrical 

configurations. 
For the case of fully developed flow between 

parallel plates with uniform surface flux of 
water, which leads to a linear boundary condi- 

tion, Dresner et al. [l, 41 have shown that an 

asymptotic solution to the diffusion equation 
for small x is in fact valid for a substantial 

distance from the inlet of the system. Subse- 
quently, this solution was generalized to account 

for variable water surface flux by a perturbation 
method [2]. In the present work asymptotic 
solutions, valid for very large Schmidt number 

systems, are determined for two dimensional 
flows by a series expansion method. 

written in terms of these coordinates for a con- 
stant fluid property system, as 

au au 
tk+2j=O 

(1) 

au du 1 dP ?2u 
u-++-=---+vv, 
8x iiy p ax "J' 

(2) 

dw. ? 
ub+2,0w,=DP 

Z2W, 

ax ?_V iiy2 
(3) 

Flow through the membrane is described by 

-c, = A [AP - 7~~ 0(x, 0)] 

= A AP [l - B, 0(x, O)]. (4) 

The mass flux of salt in the y-direction is given 

by 
7 , 

n, = w,pu - pD2 
ay 

(5) 

The -water flux through the membrane is but for an ideal membrane the flux of salt 
taken to be proportional to the total pressure vanishes at the wall so that equation (5) yields 
drop across the membrane minus the osmotic 
pressure at the wall. Since the salt concentration 

D W(& 0) 
~ = u, w,(x, 0). 

at the wall increases in the axial direction, the 
1.. (6) 
c:y 

effective osmotic pressure also increases. Con- If one combines equations (4) and (6) the result 

sequently, the water flux and the transverse iS 

velocity at the wall decrease along the direction _ D a+++, 0) 

of main flow and, therefore, the diffusional dY 
problem considered here is nonlinear. = A w,(x, 0) [AP - no 0(x, O)]. (7) 
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It was mentioned previously that the Schmidt 
number is large and, therefore, the velocity 
distribution near the wall is most important. 
In the region near the wall 

a = [?v(xYPIY 
and from equation (1) 

v=v - 
1 dr, y2 

w ,LL dx 2 

Let 

l  = (A ApI3 P x dx 
D2 s ?vc4 

~ 

0 

= 

(8) 

(9) 

yA AP 

D 

and then by combining equations (3), (8) and 
(9) one gets 

1 - B, e(n, 0) 

q2 dr, 138 

+22,x %j+ 1 
with the boundary conditions 

W, r) = I (11) 

;( i,oo) = 0 (12) 

- ; (A, 0) = o(n, 0) [l - B2 e(n, O)] (13) 

Equation (10) is similar to, but considerably 
more general than, the differential equation for 
which Dresner obtained asymptotic solutions for 
the entrance region that are useful for consider- 
able distances downstream. In particular, equa- 
tions (10) to (13) are identical to Dresner’s if 
B, = 0 and dz,/dx = 0. However, since both 
equations (10) and (13) are nonlinear Dresner’s 
approach, which utilizes the Laplace transform, 
cannot be employed here. Thus, a series expan- 
sion method will be developed which can be 
used to solve a somewhat broader class of 
problems than the reverse osmosis problem 
which is of direct interest here. 

For simplicity we shall restrict attention to 

wedge type flows and, if the effect of the very small 
v, on r, is assumed to be negligible, such flows 
can be described by 

u, = Cx” 

7, 
= c’ (f’(O) x(3n- I)/* 

J[q w] (14) 

Clearly, when n = f, r,,, is constant. Aside from 
characterizing a particular wedge angle, con- 
stant wall shear corresponds to the important 
practical case of fully developed flow between 
parallel plates if the correct expression for r, 
is used. As mentioned previously, for B2 = 0 
this case was treated by Dresner [4] who 
neglected the effect of v, on r,, so that 

3 u,c” 7, = ~ 
R 

This case is important because it is the one in 
which dz,/dx is a maximum for fully developed 
conduit flows since v, does not decrease along 
the axial direction. Also, the problem is linear 
and the fully developed velocity field is known 
exactly [5] for B, = 0, so that one can easily 
obtain an exact solution of equation (3) in terms 
of orthogonal functions, This exact solution was 
used to test the assumption of neglecting dr,/dx 
in equation (10) and it was found to be a good 
assumption except at relatively large distances 
from the inlet where the exact solution begins 
to approach its asymptotic form and equation 
(8) is no longer valid. This is not too surprising 
because even with v,/U, as large as 5 x 10m5, 
it can easily be shown that z, will be constant 
to within 5 per cent of r,(O) for 1000 radii down- 
stream from the entrance and thus the term in 
equation (10) involving dr,/dx can be neglected 
for all values of B, when the velocity distribution 
is fully developed at the entrance to the mem- 
brane test section. 
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The effect of u, on r, will be maximal for the 
case of uniform wall velocity, that is, B, = 0, 
and in this case it can be seen in Fig. 13.9 of 
reference [7] that, when u,/U, < 10m4, the 
shear stress on a flat plate (n = 0) is negligibly 
affected throughout the laminar region. Thus, 
having shown that the shear stress in a conduit, 
with n = f, and on a flat plate, with n = 0, is 
negligibly affected by the interfacial velocities 
that occur in reverse osmosis systems, it is 
reasonable to assume that the shear stress for 
systems wherein 0 < n < 5 will be similarly 
unaffected. 

Let 
0 = (9n)+, b = Y/o-’ 

and equation (10) is transformed to 

3 C fi 5 = 
I 

0 [l - B, t?(o, O)] 

+ 3+- [ 9 2 3 3n-1 (1 - n) 1 I B” ae a28 
jjj + ag’ (1% 

The boundary conditions, equations (11) to 
(13), become 

e(0, 00) = i (16) 

t( 0,al) = 0 (17) 

-$ (G, 0) = c e(0,o) [i - B, e(0, o)] (18) 

If 

then B0 = 1 and 

6+ [i+:($I~))]B% - 

- 

w4 

= 0 (19a) 

6 P e2 

= (B, - 1) e; (19b) 

e;‘+ [3+f(33t~I~)]/32el-3iBei 

i-2 

= (B, - 1) e;_l + B, C ejo) eiej- 1 

j=l 

The boundary conditions become 

e;(a) = 0 

-e;(O) = 1 - B, 

-e;(o) = (1 - 2 B,) e,(o) 

-e;(o) = (1 - 2 B,) Bi- i(0) 
i-2 

(20) 

(21a) 

@lb) 

- B2 jzl w-u ei- j- l(O). 

For n = 4 the solution for 8i can be obtained 
in closed form, in terms of the incomplete 
gamma function r(+, /X3), as 

e1 exp C-8”] -= 
1 - B, I%) 

(22) 

One can determine as many terms of the series 
expansion as desired, but since each successive 
solution depends on those preceding it, error 
accumulates and it would be difficult to obtain 
many more than the first ten terms with reason- 
able accuracy. 

Since equations (19) with the boundary condi- 
tions in equations (20) and (21) are linear, a 
superposition method may be used to obtain 
solutions independent of BZ. For example, we 
could let 

0, = (1 - B,)4, 
and obtain 

-#l(O) = 1 

&l(m) = 0 

Similarly, let 

02 = (1 - Bz) I321 + B2 4221 

Then 421 and 422 satisfy the following equa- 
tions : 

- 68421 = - 4; 

-4,(O) = 41(O) 

&i(W) = 0 
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- 6B422 = 4’1 

--442(O) = -2 4163 

442(=)) = 0. 

The same procedure may be followed for all 
Bi, the general form for each being 

(23) 

various 

ei = (1 - B,) j$I II-’ oij 

Equations (19) to (21) were solved for 
B2 up to and including & for n = 4, and e5 
for n = 0. The values of ~,~O), as defined by 
equation (23), are given up to i, j = 5. Also, to 
get an idea of the manner in which the form of u 
affects the solution the case of u = 0 in equation 
(15) [which amounts to neglecting the inhomo- 
geneities in equations (19)] was also solved for 
the Ok functions up to and including 8,. It is 
important to note that this analysis which em- 
ploys the linear velocity of equation (S), is 
exact for N, = co. For saline water solutions 
NSc N 560, which, on the basis of past experience, 
is essentially equivalent to the limiting condition 
if x/R is not too large. 

The results of most practical interest are, of 
course, related to the water produced per unit 
time per unit width of a single membrane for a 
given set of operating conditions. This quantity 
is given by 

or, in dimensionless form for wedge flows 

where 

Q’ = 2 t1 

C 

- n, 4”(O) N-[(‘+3m)/2] 

xt ; n)+~l ,.qbj”.j’.‘~+~~~2~ 

~k~3nm 1 - (2/[3(1-n)1) 
x 

For fully developed flow between parallel plates 
03 

c 

d +3 

Q+=a3-3B, 4(o) - 
k+3 

k=O 

where 

Q’ = gN,,# - 

Convenient quantities for discussing results 
are the fraction of total feed converted to pure 
water with a single membrane, Qr, which is 
given by 

Q1 =Q 
2 R U, 

and the ratio of the fraction of feed converted to 
pure water to the fraction that would be con- 
verted if the transverse velocity at the wall re- 
mained equal to u,(O) along the entire conduit. 
We shall refer to the latter quantity as the effi- 
ciency, E, and it is given by 

Q B=- 
%iO) x 4) 

2 & =I-- c ek(o) 

crk 

1 - B, 2 + k(1 - n) 
k=l 

DISCUSION OF RESULTS 

The preceding analysis is quite general in 
terms of flow conditions, and it enables one to 
make calculations rather easily for a number of 
systems once the appropriate functions have 
been determined. The functions which must be 
determined are, of course, the e,(b) for various 
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values of Bz and n. In particular, to determine the 
build-up of salt along the conduit wall, and to 
calculate the productive capacity of a given 
system, the ~~(0) must be known. t&(O) up to and 
including 19,(o) are given in Table 1 for seven 
values of B, and n = 3. Also, in Table 1 ex- 
pansion coefficients are tabulated up to and 
including 8,(O) in order to compare the behavior 
of the series for the case of n = 0 and n = i with 
the case u = 0 for several values of B,, Further- 
more, values of ~ij(O) Up to i = j = 5 are given 
in Table 2. 

Figure 2 shows, for the various cases con- 
sidered, how the wall concentration, and, there- 
fore, the concentration polarization varies with 

TIEN and DALE W. ZEH 

the boundary condition. This is to be expected 
since the finite velocity at the wall is due to the 
passage of water only, leaving salt to build up in 
concentration near the wall. On the other hand, 
convection toward the wall tends to reduce the 
salt concentration near the wall since material 
is brought in from less concentrated regions. 
Hence the predicted polarization is greater for 
the case of0 = 0 than for u = u, in the diffusion 
equation. It is noted also that for a given G the 
predicted polarization is greater for the case 
when the momentum and diffusion boundary 
layers begin at the same point, n = 0, than when 
the diffusion boundary Iayer begins in a fully 
developed velocity field, n = 3. This is true be- 

FIG. 2. Comparison of dimensionless wall concentration distributions in wedge flows for various values 
of B, and n. Solution for n = f also correspond to fulty developed flow between infinite parallel plates. 
Solutions for the ease of ts = 0, n = 4 are included to illustrate error incurred by neglecting transverse 

velocity in differential diffusion equation. 

G for various B,. It should be remembered when cause of an additional convection effect away 
viewing these data that the maximum possible from the wal1 in the former case as the mo- 
value of @,(x, 0) is l/B,. The effect of finite trans- menturn boundary layer builds up. This effect 
verse velocity in the diffusion equation is seen is, of course, greatest very near the entrance. 
to oppose the effect of finite transverse velocity in Although it cannot be seen clearly on Fig. 2, for 
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iij 1 2 3 4 5 

1 0.7385 
2 024074 -a72247 
3 0.04384 - 0.54666 0.78961 
4 0*00445 -0.21884 0.97054 -0.91500 
5 oaOO159 - 0.05707 0.61657 - 1~5758 10990 

very small ci the predicted polarization is greater 
for the former of the two cases just mentioned 
than for the case of Y = 0 in the diffusion equa- 
tion. For the class of flows considered here 

V 
--= 1 -B*e(((J,O) 

A AP 

3n-1 9flz 

+ 3(1 - n) ‘a [I 
(25) 

and, therefore, when n < f the last term con- 
tributes to increasing the value of r in the direc- 
tion away from the membrane surface and there- 
by to increasing the concentration polarization 
for a given value of u. It should be mentioned 
that this comparison is made only to show the 
effect of using different forms for u in the dif- 
ferential equation. The results will differ when 
translated from a given (T to x since the shear 
stress is different in the different systems. 

The solution obtained for the case when the 
velocity profile is initially fully developed, i.e. 
n = f should be quite accurate. It is likely, 
however that in practical systems the diffusion 
and momentum boundary layers will initiate 
at the same point. The solution obtained for the 
flat plate case, i.e. n = 0, will yield accurate 
results near the entrance of a conduit, but there 
is no clear means of extending the solution further 
downstream where the velocity profile becomes 
fully developed. 

In the system being studied the diffusion boun- 
dary layer is very thin compared to the momen- 
tum boundary layer so that the velocity field is 
established much more rapidly than the concen- 

tration field. Hence, it is reasonable to expect 
that the assumption of constant shear stress 
should apply over a relatively large fraction of 
the conduit length if it is long enough to obtain 
even a modest percentage of fresh water product 
from the saline feed solution. The problem is to 
find a suitable relationship for the term involving 
dr,/dx in equation (10). In the following dis- 
cussion it will be shown that the extent of the 
hydrodynamic entrance region may be estimated 
by a method due to Sparrow [6], and that the 
shear stress in the entrance region may be 
approximate in terms of specific wedge type 
flows. 

Following Sparrow, 

u 
-45 ; 

UlJ 0 

2 

where 6 is the boundary-layer thickness, ug is the 
velocity outside the boundary layer. Evaluating 
the shear stress from this form, we find 

2Y a.3 
T, = __ 

6 
(26) 

which yields the correct result, Z, = (3 or. UJR), 
for fully developed flow. It follows from equation 
(26) that 

0 0 

Furthermore, Sparrow’s analysis gives 

6 3R -=_ 
% 45 
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and 

dx _ 3 R2U, [(%i’,) - ‘1 [9(U&Ub) - 71 
IO (~~U~~2 

x d% 
Ub 

which yield 

Xdx s -=- 
r,(x) 

0 

1 
Therefore we can derive a value for d at the end 
of the hydrodynamic entrance region with no 
additional assumptions beyond Sparrow’s, by 
setting ff&Jb = 15 to get 

bf.d. 

When cr is larger than 0f.d. (which will be the 
case in most situations of practical interest since 
(x/R)f,d. = 0,026 NKe, and, as will be seen later, 
membrane lengths over 1000 radii may be re- 
quired to produce even 1 or 2 per cent of the 
feed as fresh water) then it follows that 

It was possible to calculate (Tr.d. easily, but it 
is much more difficult to employ Sparrow’s 
results directly in the entrance region unless 
some additional, but reasonable, appro~mations 
are made. Thus it was found that the shear stress 
distribution in the inlet can be approximated 
fairly well by power functions as is the case of 

3N 

wedge flows. In particular, 

i 

096p Ub X;0.3s2, 0.001 < X < 0.01 
R 

A l\ 

z, = (27) 
1.6PUb -o.275 
7x1 , 001 G x1 GO.1 

where 

x1 = 
x/4 R 

16- 
4 RU,,fv 

agrees with Sparrow’s calculation within 10 per 
cent and x1 N 0.1 is the end of the hydro- 
dynamic entrance region. Comparison of equa- 
tion (27) with equation (14) shows that 

1 

0.079, 0001 < xr $ 0.01 

n = 0.15, 001 < x1 6 0.1 (28) 

The important point demonstrated by equation 
(28) is that the correct inlet solution is between 
the cases n = 0 and n = 3, and its continuation 
beyond the inlet region also will be between 
these curves shown on Fig. 2. Since the curves 
of n equals 0 and $, for a given Bz, are reasonably 
close together for all values of B,, and cluster 
more closely for B, > 0.25, a crude but seemingly 
reasonable first approximation can be obtained 
by interpolation. Note also that the region of 
n = O-15 comprises a much larger fraction of 
the conduit entrance length than does that 
related to n = 0.079. Thus a first approximation 
solution for the wall concentration distribution 
can be sketched on Fig. 2 by calculating of.d,, 
locating the solution close to the midpoint 
between the n equals 0 and f curves up to 
irr,d. and then continuing the solution line parallel 
to the tt = 5 line. 

Concentration distributions throughout an 
entire system can be determined if distributions 
for &(/?) are known. For n = 5, such data, which 
involved e,(p) up to and including @,(fl), are 
given in Figs. 3-6 for B, = 0,0*15,0-25,05 and 
n = 5. 

It can be seen on Figs. 3-6 that the gradients 
of the e,(p) go essentially to zero at p N 1.5. 



916 WILLIAM N. GILL, CHI TlEN and DALE W. ZEH 

+ 

c 

FIG. 3. Series expansion coefficients, B,(fl), for case B, = 0, n = i. 

consequently, one can test the validity of can be used to estimate 
linearizing the velocity to get equation (10) by 
estimating the diffusion boundary-layer thick- 
ness y,. In the case of fully developed flow in 
parallel plate systems this thickness is given by 

Except for very large values of x/R, it can be 
seen that y&-C is small and the assumption is 
in fact a good one. Furthermore, equation (29) 

quantitatively the 
two terms on the relative magnitudes of the 

right-hand side of equation (9). For B, = 0, 
which as seen on Fig. 2 is when dr,/dx is most 
important, the ratio of the maximum value of 
the second term to the first term is about 

which is small unless x/R gets very large, but 
then equation (10) is invalid. 
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FIG. 4. Series expansion coefficients, 0,(fi), for case B, = 0.15, n = f. 

The polarization was plotted versus CJ ‘for 
various B, in Fig. 2. Since the quantity B, is 
the ratio of the osmotic pressure at the channel 
inlet to the pressure drop across the membrane, 
one might at first thought expect the curves for 
various Bz to represent the effects of varying 
the operating pressure. It is important to note, 
however, that B, appears in the definition of 
G. If one wishes to analyse the effects of varying 
the operating pressure for a given membrane, 
as specified by the quantity A, and for a given 
osmotic pressure at the inlet, n,, then LT should 

be written in the following form : 

cr = (9n)+ 

Hence, to obtain a coordinate which is depen- 
dent upon theaxialdistanceandfixedparameters, 
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FIG. 5. Series expansion coefficients, 0,(/l). for case B, = 0.25, n = f 

one should use the quantity cr B, or (r~ BJ3. Simi- 
larly, B, is implicit in the definition of the di- 
mensionless water production parameter, Q’. 
Hence, when considering the effects of varying 
the operating pressure on water production one 
should use the parameter Q’ B(:f”)‘(l-“i. 

In the light of the preceding discussion the 
effects of varying the operating pressure for 
the case n = f were analysed by plotting 
Q’ B: and E vs. (CT B,)3, as shown in Figs. 
7(a) and 7(b), respectively. It is apparent that 
as one increases the operating pressure (i.e. 

decreases B2) the water production increases, 
but that E, the ratio of the water produced to 
that which would be produced if no polarization 
occurred, decreases. Hence the total production 
increases, but the efficiency of the system 
decreases as the operating pressure increases. 

A simple relationship exists between Q’ B: 
and E, as given by 

Q*=Q+B;=F(cTB,)~E. 
2 
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FIG. 6. Series expansion coefficients, 0,(/I), for case B, = 0.5, n = f. 

It is noteworthy that the length of membrane 
required to produce a given amount of water 
decreases very rapidly as the operating pressure 
increases. 

Figures 8 and 9 give a reasonable idea of how 
typical parallel plate systems behave in terms 
of parameters which can be visualized more 
easily. Figure 8 indicates how the salt concentra- 
tion at the wall builds up more rapidly as the. 
membrane capacity increases. In contrast, Fig. 
9 shows that a much larger fraction of the feed 
is produced as the membrane capacity increases. 

The polarization is seen to be significantly 
decreased by increasing the bulk velocity. 
However, as the bulk velocity increases the 
fraction of the feed produced as pure water for 
a given membrane length decreases. Hence in 
determining the optimal system design one must 
balance the two factors. A greater total quantity 
of water is produced for a higher bulk velocity, 
but this is achieved at the cost of greater pumping 
requirements. 

Figure 10 compares our series solution for 
n = 3 with Dresner’s solution, which applies to 
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FIG. 7(a). Variation of system productivity for several values of B, as a function of 
dimensionless system length. 

FIG. 7(b). Variation of system efficiency, E, for several values of B, as a function Of 
dimensionless system length. 

fully developed flow in a flat plate conduit In order to make such a comparison the t’, in 
with constant u,, and is given by equation (31) was taken to be u,(O). Naturally, 

0, = 1 -t 6 + 5 (1 - exp [ - J(6/3)]) (31) 
this tends to exaggerate the concentration 
build-up at large CT. However, no really satis- 

where factory method for estimating an average, o,, 
other than using our series expansion results, 

t^ = 131 - B,)C13 can be specified a priori. 
9 The reverse osmosis problem posed here and 
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FIG. 8. Effect of membrane capacity, o,(O) = A AP[l - B,], and system velocity, v,, on salt concentration 
at the membrane surface as a function of channel length. 

2opgr--/ 

FIG. 9. Effect of membrane capacity, u,(O) = A AP[l - B,], and system velocity, U, 
on the percentage of feed produced as fresh water as a function of system length. 
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FIG; IO. Ratio of Dresner‘s solution. cquatlon (31), to series expansion solution. 

and the one solved by Dresner become identical 
mathematically only when B2 = 0. In this case. 
it is seen that for cr > 2.0 the ratio @Jo, O)/~(CT, 0) 
is essentially constant at 1.04. In the region 
(T 6 1, where the series expansion is more 
accurate, it is seen that B,(a, 0) underestimates 
the concentration build-up slightly, the ratio 
always being equal to or greater than about 
0.93. 

Dresner recognized the inaccuracy of equa- 
tion (31) very near the inlet, and proposed an 
alternate form for that region : 

6(t, 0) = 1 + 1.536~: 

or 

1536 
= 1 + -+1 - B,)C. 

J 
(32) 

As may be seen from equation (22), this solution 
corresponds to the first two terms of the present 
series solution, 0(a, 0) = 1 + e,(O) g. Inspection 
of the values of 0,(O) for various B, indicates that 
equation (32) will be accurate within about 
10 per cent for c < 05 for the range of B, 
considered. 

COMPARISON OF THEORY WITH 

EXPERIMENTAL DATA 

Very few data are available in the literature 
which can be used to test the theory developed 
previously. No detailed experimental studies 
of local diffusional effects in reverse osmosis 
systems were found. However, it will be shown 
that the results of the work of Merten, Lonsdale 
and Riley [3], who, for B, = 0.334, studied the 
overall effects of concentration polarization on 
the productive capacity of reverse osmosis 
systems, do agree reasonably well with the 
present theory. 

Merten et al. studied reverse osmosis in two 
cells with different membranes, designated 1 and 
2, for which the membrane constants determined 
by their method are 7.6 and 6.8 x lo-” 
g/cm’ s atm. In determining the membrane 
constant they made runs at 200 cm/s and at 
this velocity they assumed that the polarization 
was negligible. This is not exact and thus these 
membrane constants are somewhat low. 

Five experiments in the laminar range with 
membrane 1 were made at velocities ranging 
approximately from 6 to 48 cm/s. Differences 
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between present theory and these experimental work and the correlation of reference [3]. 
results range to a maximum of about 10 per In particular, with A = 6.5 x 10W5 g/cm2 s atm, 
cent, and the overall agreement would be the average percentage error between calculated 
improved substantially if the membrane con- and observed values is estimated to be about 
stant is increased by 5 or 10 per cent. In the 35 per cent for their correlation and about 
region of these experiments the cell productive 5 per cent for the present theory. 
capacity is quite insensitive to changes in flow 
rate and therefore the agreement between theory 
and experiment is merely suggestive and certainly 
not conclusive. 

In contrast to the experiments with membrane 
1. 

1, the data obtained with membrane 2 were 
taken in a region where the average cell pro- 2. 
ductivity varies more rapidly with the bulk 
mean brine velocity in the channel which 3. 
approximately ranged from 0.2 to 2.0 cm/s. 4 
Perhaps it is most significant that Merten, 
Lonsdale and Riley proposed a theory to 
explain their data and it is in this range of 2 
conditions for membrane experiments where 7, 
significant differences exist between the present 
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R&m-n expose la thCorie des ecoulements bidimensionnels avec osmose g contre-courant et g pression 
constante de telle faGon que les performances soient prbvues d’une faGon explicite en fonction des variables 
en jeu. De tels problltmes ntcessitent la solution d’une Cquation non lintaire de la diffusion avec des condi- 
tions aux limites nonlinCaires. Une solution en sCrie est obtenue qui tient compte des nonlinCaritCs a la 
fois dans l’tquation de la diffusion et dans ses conditions aux limites. 

Les couches limites avec gradient de pression sont considCr6es comme des tcoulements sur des dritdres 
et la thkorie peut &tre appliquCe h la fois pour l’&coulement entitrement ttabli et dans la rCgion d’entrte. 
Les r&hats numCriques gCnCralisCs sont donnks dans une large gamme ayant un inttret iiratique. Quelques 
r&.ultats specifiques sont Cgalement exposCs pour des systkmes typiques semblables g ceux qui peuvent 

Ctre employ&s en pratique. 

Zusammenfassuq-Analysen von kontinuierlichen zweidimensionalen StrGmungssystemen der umgekehr- 
ten Osmose bei konstantem Druck sind so wiedergegeben, dass die Systemleistung explizit in Abhlngigkeit 
von den Betriebsverlnderlichen ermittelt werden kann. Derartige Probleme erfordern die Liisung einer 
nichtlinearen Diffusionsgleichung mit nichtlinearen Randbedingungen. Eine Reihenl&ung, die Nicht- 
linearitgten sowohl in der Diffusionsgleichung beriicksichtigt als such in ihren Grenzbedingungen. wurde 
entwickelt. 

Grenzschichstriimungen mit Druckgradienten werden als Keilstrijmungen behandelt und die angege- 
benen Analysen kiinnen auf die voll ausgebildete und die EinlaufstrGmung angewandt werden. Verall- 
gemeinerte numerische Ergebnisse werden fiir einen weiten Bereich des iiraktischen Interesses gefunden. 
Einige spezifische Daten werden angegeben fiir typische Systeme Phnlich den in der Praxis verwendeten. 

AHHOTaqWI-~pOBe,7e11 aKaJIll3 IIeIlpepbIBHhIX ClICTeM C JBj’M?pHhIMH 06paTHOOCMOTWW- 

KClMkl IIOTOKaMII IIpll ~OCTORIIWOM AaBJIeHIllI. <~apaKTepHCTlIKa. TaKHX CIICTRM PaCCWIThI- 

naeTcfl B FIBHOM fwAe c no.nourbIo paCloyrix nap:imeTpos. Tatigre aafiasx TpeT,yloT pemeHnH 
nenanefinoro ypanIrefIw ~H@$J’:~lI~l lIpll Henkrrreirabrx ~~3HH’IlIhIX )WIOBWlX. nony4eII pJI)J 

pelIIeHHfi C J’WTOM IIeJI~iHefiHOCTH ypaBlIeHW4 AII$II&“BWM II rpaHHWIbIX gC.JIOB&iit. 

TeseHwI B IIOrpaHWIHOM CJIOe C rpai[HeHTOM AaBJIt?HMFI aHaJIOrMYHh1 06TeKaHWO KJIIIHa. 

nptfBeaeHHhI8 aHaJIM3 MOHtHO IIpMMeHIlTb KaK K IIOJIHOCTbK) pa3BHTOMJ’ TWieHSfIO, TaK H 

BXOAHOMJ’ J’YaCTKy. npezCTaBJleHb1 0606~eHHbIe VIICJIeHHbIe pe3yJIbTaTM AJIJI IIIPIpOKOI’O 

AMaIIa3OHa IiCCJIefiOBaHHhIX IIapaMeTpOB. nHHB@fleHbI TaKHE HeKOTOphIe AaHHhIe AJIfl CIiCTeM, 

npe~cTaBnfnO~Icf IIpaKTaqecKriti IrHTepec. 


