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Abstract—Analyses of continuous constant pressure reverse osmosis two-dimensional flow systems are
given such that system performance is predicted explicitly in terms of operating variables. Such problems
require the solution of a nonlinear diffusion equation with nonlinear boundary conditions. A series
solution, which accounts for nonlinearities in both the diffusion equation and its boundary conditions, is

developed.

Boundary-layer flows with pressure gradient are treated as wedge type flows, and the analyses given can
be applied to both fully developed and entrance region flows. Generalized numerical results are given for
a wide range of practical interest. Some specific data are also reported for typical systems similar to those

which may be used in practice.

NOMENCLATURE

membrane constant defined by equa-
tion (4);

= mo/AP;

diffusion coefficient ;

fraction of feed converted to fresh
water divided by the fraction that
would be converted if the wall velocity
were v,(0) along the entire conduit;
mass flux of salt defined by equation
) '

4U,R
Péclet number, ——

’

4U, R
Reynolds number, —2—;
Vv
_Uaxxp,
u k]

Schmidt number, v/D;

total pressure drop across membrane;
volume of water produced per unit
time per unit width of membrane;
half channel width;

axial velocity ;

core velocity in entrance region of
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flat duct;
U,, bulk velocity of brine in parallel plate
channel at x = 0;
v, transverse velocity ;
v,{0), transverse velocity at wall at entrance
to system,
w,,  mass fraction of salt in brine;
X, axial distance coordinate ;
x, =16-4R
4R U,
Vs transverse distance coordinate.
Greek symbols
2, density;
i, viscosity;
7, osmotic pressure of a saline solution;
Ty,  Osmotic pressure at x = 0;
0, dimensionless mass fraction,
wy/w, (0, y);
7,,  shear stress at membrane wall;
v, kinematic viscosity;
", dimensionless coordinate,
y [(4 AP)/D];
o, = (94,
B, =nel;
o, = D/(v,(0) R);
X
Z =(AAP)3,uJ’ dx
' D? T(X)
]
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0, momentum boundary-layer thickness.
Subscripts

b, bulk value;

W, value at membrane surface;

oc, free stream quantity.

ANALYSIS

CURRENTLY, one of the more promising pro-
cesses for purifying saline water solutions is the
reverse osmosis or ultra-filtration process. In
principle, reverse osmosis is very simple and its
most attractive feature is that no obvious phase
change is required in order to separate the salt
and water. Separations in reverse o0Smosis
systems involve the use of selective membranes
which, in the ideal case, are permeable to water
but not salt. Practical designs will no doubt
employ continuous systems but the geometry
of such systems may vary quite considerably.
Therefore, it is desirable to develop mathe-
matical solutions which are general enough to
apply to various flow conditions and geometrical
configurations.

For the case of fully developed flow between
parallel plates with uniform surface flux of
water, which leads to a linear boundary condi-
tion, Dresner et al. [1, 4] have shown that an
asymptotic solution to the diffusion equation
for small x is in fact valid for a substantial
distance from the inlet of the system. Subse-
quently, this solution was generalized to account
for variable water surface flux by a perturbation
method [2]. In the present work asymptotic
solutions, valid for very large Schmidt number
systems, are determined for two dimensional
flows by a series expansion method.

The water flux through the membrane is
taken to be proportional to the total pressure
drop across the membrane minus the osmotic
pressure at the wall. Since the salt concentration
at the wall increases in the axial direction, the
effective osmotic pressure also increases. Con-
sequently, the water flux and the transverse
velocity at the wall decrease along the direction
of main flow and, therefore, the diffusional
problem considered here is nonlinear.

Since the Schmidt number for salt water is
about 560, the diffusion boundary layer is
much thinner than the momentum boundary
layer and, therefore, the velocity components
can be represented by expressions which are
accurate only in the region near the wall. Exact
asymptotic velocity components are used in
both the diffusion equation and the boundary
condition at the wall.

Figure 1 shows the coordinate system used.
If the diffusion boundary layer is very thin. then

FiG. 1. Coordinate system.

one can neglect the effect of any transverse
curvature of the conduit, and the continuity,
momentum and diffusion equations can be
written in terms of these coordinates for a con-
stant fluid property system, as

du Ov
LAY 1
o + 2 (N
ugz+v@——£a—})+viz—q (2}

ox dy  pox ay?
ow, ow 0w

s s — S 3
TNy 2y? )

Flow through the membrane is described by
—v, = A[AP — 7, 0(x, 0)]
= AAP[1 — B, 0(x,0)]. (4

The mass flux of salt in the y-direction is given
by
‘w

S 5
3y (5)
but for an ideal membrane the flux of salt
vanishes at the wall so that equation (5) yields

ng = wg pv — pD

D ow(x, 0) _

v, Wix, O). (6)
ay
If one combines equations (4) and (6) the result
is
dwgx, 0)
-D —éy——

= Aw(x, 0 [AP — 75 0(x,0)]. (7)
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It was mentioned previously that the Schmidt
number is large and, therefore, the velocity
distribution near the wall is most important.
In the region near the wall

u = [1,(x)/uly (8)

and from equation (1)

1dz, y?
v=17v, — ;‘a—z“ (9)
Let
1= (AAP? u [ dx _yAAP
- Dp? 7,(x) "=

0

and then by combining equations (3), (8) and
(9) one gets

00
no = [1 — B, 6(4,0)
2 2
n* dr, |00 o°0
Ty dz] o o (10)
with the boundary conditions
000, =1 (11)
00
— (4, 00) =0 (12)
on
00
- 6—’1(/1, 0) = 0(4, 0 [1 - B,0(4,0] (13)

Equation (10) is similar to, but considerably
more general than, the differential equation for
which Dresner obtained asymptotic solutions for
the entrance region that are useful for consider-
able distances downstream. In particular, equa-
tions (10) to (13) are identical to Dresner’s if
B, = 0 and dz,/dx = 0. However, since both
equations (10) and (13) are nonlinear Dresner’s
approach, which utilizes the Laplace transform,
cannot be employed here. Thus, a series expan-
sion method will be developed which can be
used to solve a somewhat broader class of
problems than the reverse osmosis problem
which is of direct interest here.

For simplicity we shall restrict attention to

wedge type flows and, if the effect of the very small
v, on 7, is assumed to be negligible, such flows
can be described by

U, = Cx"
u !
[ d'(%)

1+n qio]
4 2 vx
7, = C} ¢"(0) x> 12 \/ [—1 ; é upJ (14)

Clearly, when n = §, 7,, is constant. Aside from
characterizing a particular wedge angle, con-
stant wall shear corresponds to the important
practical case of fully developed flow between
parallel plates if the correct expression for 7,
is used. As mentioned previously, for B, = 0
this case was treated by Dresner [4] who
neglected the effect of v,, on 7,, so that

3U,p
T, = ———
e R

This case is important because it is the one in
which dr,,/dx is a maximum for fully developed
conduit flows since v,, does not decrease along
the axial direction. Also, the problem is linear
and the fully developed velocity field is known
exactly [5] for B, = 0, so that one can easily
obtain an exact solution of equation (3) in terms
of orthogonal functions. This exact solution was
used to test the assumption of neglecting dz,/dx
in equation (10) and it was found to be a good
assumption except at relatively large distances
from the inlet where the exact solution begins
to approach its asymptotic form and equation
(8) is no longer valid. This is not too surprising
because even with v,,/U, as large as 5 x 10773,
it can easily be shown that 7, will be constant
to within 5 per cent of 7,(0) for 1000 radii down-
stream from the entrance and thus the term in
equation (10) involving dt,,/dx can be neglected
for all values of B, when the velocity distribution
is fully developed at the entrance to the mem-
brane test section.
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The effect of v,, on 7, will be maximal for the
case of uniform wall velocity, that is, B, = 0,
and in this case it can be seen in Fig. 139 of
reference [7] that, when »,/U, < 107%, the
shear stress on a flat plate (n = 0) is negligibly
affected throughout the laminar region. Thus,
having shown that the shear stress in a conduit,
with n = 4, and on a flat plate, with n = 0, is
negligibly affected by the interfacial velocities
that occur in reverse osmosis systems, it is
reasonable to assume that the shear stress for
systems wherein 0 < n < % will be similarly
unaffected.

Let
-1

o=04 B=rno
and equation (10) is transformed to

00
30[3%:{0[1 — B, 6(s, 0)]
9 3n 020

+P+23u-nJW}w+_ﬁ

The boundary conditions, equations (11) to
(13), become

(15)

6(0, 0) = 1 (16)
a0
5B(o,oo)=0 (17
0 0) 0(s,0)[1 — B, 0(5,0)] (18)
aB 0', =aq 0' 2 >
If
0= 2 0p)c
k=0
then 6, = 1 and
I 3
o7 + 3+2(3('1' )]ﬂzoa—zsﬁel
=0 (19a)
y I ° 3n—1_1 2
0; + _3+2<M3(1—n))_ p*o, —6p86,
= (B, — 1)8; (19b)
. [ 9<3n—1>_ 2 o .
0,- + _3+7 m— ﬂ gi_3lﬁ0.‘

(32_1)01 1+B2 z 01’(0)01 j-1
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The boundary conditions become

fd0) = 0 (20)
—6,00)= 1 — B, (21a)
=05(0) = (I — 2 B,;) 0,(0) (21b)

—60) = (1 — 2B,) 6,_,(0)
i—2
~ B, 3 0{0)0,.-,(0)

For n = % the solution for 8, can be obtained
in closed form, in terms of the incomplete

gamma function '3, £°), as
2 A3
ré g )] 22

01 _ exp["ﬂs] _ B [1 _
1- B, ré ré

One can determine as many terms of the series
expansion as desired, but since each successive
solution depends on those preceding it, error
accumulates and it would be difficult to obtain
many more than the first ten terms with reason-
able accuracy.

Since equations (19) with the boundary condi-
tions in equations (20) and (21) are linear, a
superposition method may be used to obtain
solutions independent of B,. For example, we
could let

0, = (1 — By) ¢,
and obtain

[3 + 2<31" )] B¢, — 3¢ =0

—3(0) =
¢i(c0) =0

Similarly, let

0, = (1 — By) [¢21 + B, ¢2,]
Then ¢,, and ¢,, satisfy the following equa-

tions:
3
,2,1+|:3+2<1n )]ﬁ2¢21
- 6B¢21 = - ¢/1
—$2,(0) = ¢,(0)

¢3,(c) =0
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)] B* ¢2,

3
5, + [3+f(1"
“6ﬁ¢22=¢'1

—$25(0) = -2 ¢,(0)
$25(c0) = 0.

The same procedure may be followed for all
0., the general form for each being

0.‘ = (1 - Bz) ‘Zl Blz'_1 ¢ij (23)
=

Equations (19) to (21) were solved for various
B, up to and including 8, for n = 1, and 0,
for n = 0. The values of ¢;{0), as defined by
equation (23), are given up to i, j = 5. Also, to
get an idea of the manner in which the form of v
affects the solution the case of v = 0 in equation
(15) [which amounts to neglecting the inhomo-
geneities in equations (19)] was also solved for
the 6, functions up to and including 6. It is
important to note that this analysis which em-
ploys the linear velocity of equation (8), is
exact for Ny, = oo. For saline water solutions
N, >~ 560, which, on the basis of past experience,
is essentially equivalent to the limiting condition
if x/R is not too large.

The results of most practical interest are, of
course, related to the water produced per unit
time per unit width of a single membrane for a
given set of operating conditions. This quantity
is given by

0= J |v,| dx
0

S T i 2ds (24
"IN, (AAP)[[p(AAle]" 7 Y
(1]

or, in dimensionless form for wedge flows

- . 640 o*
Qt = g2ft-m [1—2322 = ]
Ly K1 =) +2
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where

+

[1 —n)¢"(0) Ngla+3m2)

_2
D

(1 — B )Um [3(n+1)/2]
e

-3n/2)]| -2/[3( -
N(Rex"/ )] B3 -nl

For fully developed flow between parallel plates

a0

o,k+3
+ _ .3 _
Q" =0 -3B, E 00)

k=0

_30 _; [2l0)]?
= 5 Nedl - By [7]

where
Q +

Convenient quantities for discussing results
are the fraction of total feed converted to pure
water with a single membrane, @,, which is
given by

Q
2R U,

o, =

and the ratio of the fraction of feed converted to
pure water to the fraction that would be con-
verted if the transverse velocity at the wall re-
mained equal to v,(0) along the entire conduit.
We shall refer to the latter quantity as the effi-
ciency, E, and it is given by

_ 0
T 0, 0) x

2B,

o.k
1—3229"(0)2+k(1 — n)

k=1

=1—

DISCUSSION OF RESULTS
The preceding analysis is quite general in
terms of flow conditions, and it enables one to
make calculations rather easily for a number of
systems once the appropriate functions have
been determined. The functions which must be
determined are, of course, the 8,(B) for various
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values of B, and n. In particular, to determine the
build-up of salt along the conduit wall, and to
calculate the productive capacity of a given
system, the 6,{0) must be known. 6,(0) up to and
including #4(0) are given in Table 1 for seven
values of B, and n = 3. Also, in Table 1 ex-
pansion coefficients are tabulated up to and
including #40) in order to compare the behavior
of the series for the case of n = 0 and n = { with
the case v = O for several values of B,. Further-
more, values of ¢,(0) up toi = j = 5 are given
in Table 2.

Figure 2 shows, for the various cases con-
sidered, how the wall concentration, and, there-
fore, the concentration polarization varies with

WILLIAM N. GILL. CHI TIEN and DALE W. ZEH

the boundary condition. This is to be expected
since the finite velocity at the wall is due to the
passage of water only, leaving salt to build up in
concentration near the wall. On the other hand,
convection toward the wall tends to reduce the
salt concentration near the wall since material
is brought in from less concentrated regions.
Hence the predicted polarization is greater for
the case of v = 0 than for v = v, in the diffusion
equation. It is noted also that for a given ¢ the
predicted polarization is greater for the case
when the momentum and diffusion boundary
layers begin at the same point, n = 0, than when
the diffusion boundary layer begins in a fully
developed velocity field, n = . This is true be-

40 r /
0l ¥=w, 8,700 09 4
02 0125 L n=1/3 o6 A
03 0250 Y4 6/
" 04 O Py // 1
3% 05 v=0,8,: 00 4 7
06 0125 A A
o7 0250 o0
c 08 0500 . .
8 30} 09 veriorflat e <
[ plate,&,= 00 /// s
< 01254 pe0 e »”~ 10 A
8 i 0250 e P
é’, {2 O-50 ,i/r,/ //’//
= & // s - - //-—02
; /’/ o -~ - -~
?} //// - ..—I‘I"‘/
S P - - P Py
320 T . >
é - /‘/07/-/__/‘/ 03
e
/—
- 08 s
i me———__ }
e — s T
'% 02 04 06 08 i0 12 T4 X3 8 2.0

F1G. 2. Comparison of dimensionless wall concentration distributions in wedge flows for various values

of B, and n. Solution for n = § also correspond to fully developed flow between infinite parallel plates.

Solutions for the case of v = 0, n = } are included to illustrate error incurred by neglecting transverse
velocity in differential diffusion equation.

¢ for various B,. It should be remembered when
viewing these data that the maximum possible
value of 8 (x, 0} is 1/B,. The effect of finite trans-
verse velocity in the diffusion equation is seen
to oppose the effect of finite transverse velocity in

cause of an additional convection effect away
from the wall in the former case as the mo-
mentum boundary layer builds up. This effect
is, of course, greatest very near the entrance.
Although it cannot be seen clearly on Fig. 2. for
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Table 2. Values of ¢, £0), As defined by 6, = (1 — B,) 3 ¢,; B!

n=

i=1

s

i/j 1 2 3 4 5

1 0-7385

2 0-24074 ~072247

3 004384 ~054666 078961

4 000445 —021884 097054  —0:91500

5 0000159  —005707 061657  —1-5758 10990

very small ¢ the predicted polarization is greater
for the former of the two cases just mentioned
than for the case of v = 0 in the diffusion equa-
tion. For the class of flows considered here

v
AAP

=1- B20(030)

In—1 |48
+ 3(1 — n) [2 cr] @3)
and, thercfore, when n < % the last term con-
tributes to increasing the value of v in the direc-
tion away from the membrane surface and there-
by to increasing the concentration polarization
for a given value of ¢. It should be mentioned
that this comparison is made only to show the
effect of using different forms for v in the dif-
ferential equation. The results will differ when
translated from a given ¢ to x since the shear
stress is different in the different systems.

The solution obtained for the case when the
velocity profile is initially fully developed, i.e.
n = 1 should be quite accurate. It is likely,
however that in practical systems the diffusion
and momentum boundary layers will initiate
at the same point. The solution obtained for the
flat plate case, ie. n = 0, will yield accurate
results near the entrance of a conduit, but there
is no clear means of extending the solution further
downstream where the velocity profile becomes
fully developed.

In the system being studied the diffusion boun-
dary layer is very thin compared to the momen-
tum boundary layer so that the velocity field is
established much more rapidly than the concen-

tration field. Hence, it is reasonable to expect
that the assumption of constant shear stress
should apply over a relatively large fraction of
the conduit length if it is long enough to obtain
even a modest percentage of fresh water product
from the saline feed solution. The problem is to
find a suitable relationship for the term involving
dr,/dx in equation (10). In the following dis-
cussion it will be shown that the extent of the
hydrodynamic entrance region may be estimated
by a method due to Sparrow [6], and that the
shear stress in the entrance region may be
approximated in terms of specific wedge type
flows.
Following Sparrow,

2
Y _H,Y_ (Y
Us o o

where J is the boundary-layer thickness, u; is the
velocity outside the boundary layer. Evaluating
the shear stress from this form, we find

_2;‘“‘5
Y8

T (26)
which yields the correct result, 7, = (3 4 Uy/R),
for fully developed flow. It follows from equation
(26) that

X X

dx _ odx
1) ) 2pus
0

0

Furthermore, Sparrow’s analysis gives

s _3R{M U,
“a_ Us U



CONTINUOUS REVERSE OSMOSIS SYSTEMS FOR DESALINATION

and
dx 3 RZUb [(ua/Ub) - 1] [9(u6/U,,) - 7]
10 /Uy
Us
x d U,
which yield
[ dx 9 R3 u; 25
= In-2
f 0 Bow [9 "U, " W,
i)

a«|8

33 3 ]
T wlU T WU

Therefore we can derive a value for ¢ at the end
of the hydrodynamic entrance region with no
additional assumptions beyond Sparrow’s, by
setting u,/U, = 1-5 to get

Rew

Oa. = 0:603 Ni, —Re= 5

When ¢ is larger than o¢4 (which will be the
case in most situations of practical interest since
(x/R)e 4. = 0026 N, and, as will be seen later,
membrane lengths over 1000 radii may be re-
quired to produce even 1 or 2 per cent of the
feed as fresh water) then it follows that

N 3 v, (0)/U
=<0 2 {__ Rew 3 b
o {0 22 NZ, (l B) + 13 (1 ;

3 12 x]*
= 1-8, [‘009” * Na R‘]

It was possible to calculate o 4 easily, but it
is much more difficult to employ Sparrow’s
results directly in the entrance region unless
some additional, but reasonable, approximations
are made. Thus it was found that the shear stress
distribution in the inlet can be approximated
fairly well by power functions as is the case of

3N
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wedge flows. In particular,

%g—%x{"'”z, 0001 < x, <001
Ty = 6uU @27

—%—3 x;%¥75 001 < x, <01
where

x/4 R
=1
* =16 R

agrees with Sparrow’s calculation within 10 per
cent and x, ~ 01 is the end of the hydro-
dynamic entrance region. Comparison of equa-
tion {27) with equation (14) shows that

{0-079, 0-001
"=lo1s, o001

The important point demonstrated by equation
(28) is that the correct inlet solution is between
the cases n = 0 and n = 4, and its continuation
beyond the inlet region also will be between
these curves shown on Fig. 2. Since the curves
of nequals 0 and 4, for a given B,, are reasonably
close together for all values of B,, and cluster
more closely for B, > 0-25, a crude but seemingly
reasonable first approximation can be obtained
by interpolation. Note also that the region of

= (15 comprises 2 much larger fraction of
the conduit entrance length than does that
related to n = 0-079. Thus a first approximation
solution for the wall concentration distribution
can be sketched on Fig. 2 by calculating o; 4,
locating the solution close to the midpoint
between the n equals 0 and { curves up to
0 4. and then continuing the solution line parallel
to the n = §line.

Concentration distributions throughout an
entire system can be determined if distributions
for 6,(B) are known. For n = 4, such data, which
involved 8,(B) up to and including 84p), are
given in Figs. 3-6 for B, = 0,0:15,0:25,0-5and

=1

=1

It can be seen on Figs. 36 that the gradients
of the 8,(B) go essentially to zero at § ~ 1-5

xl 0'01

S
<ol

<
<
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FIG. 3. Series expansion coefficients, 6,(f), for case B, = 0, n = L.

Consequently, one can test the validity of
linearizing the velocity to get equation {10) by
estimating the diffusion boundary-layer thick-
ness y,. In the case of fully developed flow in
parallel plate systems this thickness is given by

2x 2x T
Ye _|_22X P o 22X s (29)
R NSCNReR NSCNRER

Except for very large values of x/R, it can be
seen that y/R is small and the assumption is
in fact a good one. Furthermore, equation (29)

can be used to estimate quantitatively the
relative magnitudes of the two terms on the
right-hand side of equation (9). For B, = 0,
which as seen on Fig. 2 is when dr,/dx is most
important, the ratio of the maximum value of
the second term to the first term is about

(é)-" 12 x !
: NSCNReR

which is small unless x/R gets very large, but
then equation (10} is invalid.
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1Q

8,=0150

o8 8, x10°

8,x10

&
8,x10 /

-02 /
-04 /

8y x10%
-06
-08

0 02 04 06 08 10 ) r4

B

F1G. 4. Series expansion coefficients, 8,(8). for case B, = 0-15,n = §.

The polarization was plotted versus ¢ for
various B, in Fig. 2. Since the quantity B, is
the ratio of the osmotic pressure at the channel
inlet to the pressure drop across the membrane,
one might at first thought expect the curves for
various B, to represent the effects of varying
the operating pressure. It is important to note,
however, that B, appears in the definition of
o. If one wishes to analyse the effects of varying
the operating pressure for a given membrane,
as specified by the quantity A, and for a given
osmotic pressure at the inlet, ny, then ¢ should

be written in the following form :

o= (94}
(AAPY [dx)?
B s
9 w
_ g (AR > ufax
B, D*} 1,
(]

Hence, to obtain a coordinate which is depen-
dentupontheaxial distance and fixed parameters,
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A

8=025

05

§,x10

FIG. 5. Series expansion coefficients, 0,(f), for case B, = 025, n = L.

one should use the quantity ¢ B, or (¢ B,)*. Simi-
larly, B, is implicit in the definition of the di-
mensionless water production parameter, Q*.
Hence, when considering the effects of varying
the operating pressure on water production one
should use the parameter Q* By *™/(1~m,

In the light of the preceding discussion the
effects of varying the operating pressure for
the case n { were analysed by plotting
Q* B2 and E vs. (6 B,)*, as shown in Figs.
7(a) and 7(b), respectively. It is apparent that
as one increases the operating pressure (ie.

decreases B,) the water production increases,
but that E, the ratio of the water produced to
that which would be produced if no polarization
occurred, decreases. Hence the total production
increases, but the efficiency of the system
decreases as the operating pressure increases.

A simple relationship exists between Q* B3
and E, as given by

0* = Q" B = (c B,)* E.

1 - B,
B

2
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FIG. 6. Series expansion coefficients, 8,(f), for case B, = 0:5,n = {.

It is noteworthy that the length of membrane
required to produce a given amount of water
decreases very rapidly as the operating pressure
increases.

Figures 8 and 9 give a reasonable idea of how
typical parallel plate systems behave in terms
of parameters which can be visualized more
easily. Figure 8 indicates how the salt concentra-

tion at the wall builds up more rapidly as the"

membrane capacity increases. In contrast, Fig.
9 shows that a much larger fraction of the feed
is produced as the membrane capacity increases.

The polarization is seen to be significantly
decreased by increasing the bulk velocity.
However, as the bulk velocity increases the
fraction of the feed produced as pure water for
a given membrane length decreases. Hence in
determining the optimal system design one must
balance the two factors. A greater total quantity
of water is produced for a higher bulk velocity,
but this is achieved at the cost of greater pumping
requirements.

Figure 10 compares our series solution for
n = % with Dresner’s solution, which applies to
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Fic. 7(b). Variation of system efficiency. E, for several values of B, as a function of
dimensionless system length.

fully developed flow in a flat plate conduit In order to make such a comparison the v,, in

with constant »,, and is given by equation (31) was taken to be v,(0). Naturally,
this tends to exaggerate the concentration
fp=1+e¢+5{1~ exp[— \/ (€/3)]} K2 build-up at large o. However, no really satis-
where factory method for estimating an average, v,,
other than using our series expansion resuits,

- [0 — Byo]? can be specified a priori.

9 The reverse osmosis problem posed here and
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Fi 10, Ratio of Dresner’s solution, equation (31), to series expansion solution.

and the one solved by Dresner become identical
mathematically only when B, = 0. In this case.
it is seen that for ¢ = 2-0 the ratio (o, 0)/6(s, 0)
is essentially constant at 1:04. In the region
o < 1, where the series expansion is more
accurate, it is seen that (g, 0) underestimates
the concentration build-up slightly, the ratio
always being equal to or greater than about
0-93.

Dresner recognized the inaccuracy of equa-
tion (31) very near the inlet, and proposed an
alternate form for that region:

6, 0) =1 + 1:536 ¢*

or

— B,)e. (32)
As may be seen from equation (22), this solution
corresponds to the first two terms of the present
series solution, 6(c, 0) = 1 + 6,(0) 6. Inspection
of the values of 6,(0) for various B, indicates that
equation (32) will be accurate within about
10 per cent for ¢ < 05 for the range of B,
considered.

COMPARISON OF THEORY WITH
EXPERIMENTAL DATA

Very few data are available in the literature
which can be used to test the theory developed
previously. No detailed experimental studies
of local diffusional effects in reverse osmosis
systems were found. However, it will be shown
that the results of the work of Merten, Lonsdale
and Riley [3], who, for B, = 0-334, studied the
overall effects of concentration polarization on
the productive capacity of reverse osmosis
systems, do agree reasonably well with the
present theory.

Merten et al. studied reverse osmosis in two
cells with different membranes, designated 1 and
2, for which the membrane constants determined
by their method are 76 and 68 x 10°°
g/cm? s atm. In determining the membrane
constant they made runs at 200 cm/s and at
this velocity they assumed that the polarization
was negligible. This is not exact and thus these
membrane constants are somewhat low.

Five experiments in the laminar range with
membrane | were made at velocities ranging
approximately from 6 to 48 cm/s. Differences
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between present theory and these experimental
results range to a maximum of about 10 per
cent, and the overall agreement would be
improved substantially if the membrane con-
stant is increased by 5 or 10 per cent. In the
region of these experiments the cell productive
capacity is quite insensitive to changes in flow
rate and therefore the agreement between theory
and experiment is merely suggestive and certainly
not conclusive.

In contrast to the experiments with membrane
1, the data obtained with membrane 2 were
taken in a region where the average cell pro-
ductivity varies more rapidly with the bulk
mean brine velocity in the channel which
approximately ranged from 02 to 2-0 cm/s.
Perhaps it is most significant that Merten,
Lonsdale and Riley proposed a theory to
explain their data and it is in this range of
conditions for membrane experiments where
significant differences exist between the present
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work and the correlation of reference [3].
In particular, with 4 = 6:8 x 10~° g/cm?s atm,
the average percentage error between calculated
and observed values is estimated to be about
35 per cent for their correlation and about
5 per cent for the present theory.
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Résumé—On expose la théorie des écoulements bidimensionnels avec osmose a contre-courant et & pression
constante de telle fagon que les performances soient prévues d’une fagon explicite en fonction des variables
en jeu. De tels problémes nécessitent la solution d’une équation non linéaire de la diffusion avec des condi-
tions aux limites nonlinéaires. Une solution en série est obtenue qui tient compte des nonlinéarités a la
fois dans 1’équation de la diffusion et dans ses conditions aux limites.

Les couches limites avec gradient de pression sont considérées comme des écoulements sur des driedres
et la théorie peut étre appliquée a la fois pour I’écoulement enti¢rement établi et dans la région d’entrée.
Les résultats numériques généralisés sont donnés dans une large gamme ayant un intérét iiratique. Quelques
résultats spécifiques sont également exposés pour des systémes typiques semblables a ceux qui peuvent

étre employés en pratique.

Zusammenfassung—Analysen von kontinuierlichen zweidimensionalen Stromungssystemen der umgekehr-
ten Osmose bei konstantem Druck sind so wiedergegeben, dass die Systemleistung explizit in Abhangigkeit
von den Betriebsverdnderlichen ermittelt werden kann. Derartige Probleme erfordern die Losung einer
nichtlinearen Diffusionsgleichung mit nichtlinearen Randbedingungen. Eine Reihenl6sung, die Nicht-
linearitdten sowohl in der Diffusionsgleichung beriicksichtigt als auch in ihren Grenzbedingungen. wurde

entwickelt.

Grenzschichstromungen mit Druckgradienten werden als Keilstromungen behandelt und die angege-
benen Analysen kénnen auf die voll ausgebildete und die Finlaufstromung angewandt werden. Verall-
gemeinerte numerische Ergebnisse werden fiir einen weiten Bereich des iiraktischen Interesses gefunden.
Einige spezifische Daten werden angegeben fiir typische Systeme &hnlich den in der Praxis verwendeten.

AnHorauua—IIpoBejlen aHanAK3 HeNpepPHIBHEIX CHCTEM C JBYMePHBIMH 0GDATHOOCMOTIUYEC-
KNMM TNOTOKAMM NPU NOCTOAHHOM HAABJICHHM. XapaKTePMCTUKA TAKMX CHUCTEM DAaCCUHTHI-
BAaeTCA B ABHOM BHie ¢ moMouiblo paGounx napamerpos. Takme 3ajayu TpeOyioT pellleHHH
HeJqmHeltHOTO ypaBHeHNA Auddysiu npu HeJHHelHHX Tpanuunblx ycxosuax. [loayden pap
peuieHnt ¢ y4eToM HeJMHeliHOCTH ypaBHeHHA Iud@ysuu U rpaHUYHBIX YCIOBUIL.

TeveHnA B NMOTPaHUYHOM CJI0€ ¢ TPAZNEHTOM JABJEeHHUA &HAJIOTMYHBL O0TEKAHMIO KIUHA.
ITpuBefieHHEI! aHAIM3 MOMKHO TPUMEHMTh KAK K TOJHOCTBI0 PA3BMTOMY TeUeHWIO, TaK M
BXOjHOMY yuacTKy. IIpeacraBnenbl 00o0mieHHBIe YHCJHEHHBle DPE3yJbTATHl 1A LIHPOKOrO
AMANa3oHa HCCleJOBAHHbIX napameTpoB. [IHUBeTeHEl TaK#e HEKOTOPHIe TAHHBIE [JIF CHCTEM,

NPEACTABIAIILUN NPAKTHYECKHN HHTEpeEC.



